13 research outputs found

    Content analysis: What are they talking about?

    Get PDF
    Quantitative content analysis is increasingly used to surpass surface level analyses in Computer-Supported Collaborative Learning (e.g., counting messages), but critical reflection on accepted practice has generally not been reported. A review of CSCL conference proceedings revealed a general vagueness in definitions of units of analysis. In general, arguments for choosing a unit were lacking and decisions made while developing the content analysis procedures were not made explicit. In this article, it will be illustrated that the currently accepted practices concerning the ‘unit of meaning’ are not generally applicable to quantitative content analysis of electronic communication. Such analysis is affected by ‘unit boundary overlap’ and contextual constraints having to do with the technology used. The analysis of e-mail communication required a different unit of analysis and segmentation procedure. This procedure proved to be reliable, and the subsequent coding of these units for quantitative analysis yielded satisfactory reliabilities. These findings have implications and recommendations for current content analysis practice in CSCL research

    Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Get PDF
    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation
    corecore